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ABSTRACT We quantitatively describe an RNA molecule under the influence of an external force exerted at its two ends as
in a typical single-molecule experiment. Our calculation incorporates the interactions between nucleotides by using the
experimentally determined free energy rules for RNA secondary structure and models the polymeric properties of the exterior
single-stranded regions explicitly as elastic freely jointed chains. We find that despite complicated secondary structures,
force-extension curves are typically smooth in quasi-equilibrium. We identify and characterize two sequence/structure-
dependent mechanisms that, in addition to the sequence-independent entropic elasticity of the exterior single-stranded
regions, are responsible for the smoothness. These involve compensation between different structural elements on which the
external force acts simultaneously and contribution of suboptimal structures, respectively. We estimate how many features
a force-extension curve recorded in nonequilibrium, where the pulling proceeds faster than rearrangements in the secondary
structure of the molecule, could show in principle. Our software is available to the public through an “RNA-pulling server.”

INTRODUCTION

In recent years, single-molecule experiments using optical
tweezers, atomic force microscopy, and other techniques
have successfully probed basic physical properties of bi-
omolecules through the application of forces in the pN
range (see, e.g., Bockelmann et al., 1997; Essevaz-Roulet et
al., 1997; Mehta et al., 1999, and references therein; Rief et
al., 1997, 1999; Smith et al., 1996; Yang et al., 2000). Both
simple elastic properties of the polymers (such as persis-
tence length and longitudinal elasticity) and structural tran-
sitions (e.g., unfolding of protein domains) were character-
ized by recording and analyzing force-extension curves
(FECs). For nucleic acids, a prominent experiment of the
latter type is the “unzipping” of double-stranded DNA
(Bockelmann et al., 1997; Essevaz-Roulet et al., 1997). The
resulting FECs display clear sequence-specific features
(e.g., local maxima), which may be attributed to small
regions of the sequence that are more strongly bound than
their neighbors (Essevaz-Roulet et al., 1997; Lubensky and
Nelson, 2000; Thompson and Siggia, 1995). In contrast,
long single-stranded DNA, which, like RNA, may fold into
complicated branched structures by forming intra-strand
basepairs, showed extremely smooth FECs in a very recent
experiment by Maier et al. (2000). Thus, depending on its
structure, DNA may show a broad range of FECs from very
rugged to completely featureless. However, it is unclear
how quantitatively the structure determines the outcome of
the FEC measurement.

Here, we address this question theoretically, focusing on
the case of RNA and restricting ourselves to secondary
structure (i.e., basepairing patterns only instead of full,

tertiary structure). In this context, RNA seems to be a more
interesting object than DNA because RNA naturally occurs
in many different and functionally important structures,
while DNA is primarily found as a double strand. One may
hope that pulling experiments generate new insights into the
RNA folding problem (Tinoco and Bustamante, 1999, and
references therein), including the folding pathways (Chen
and Dill, 2000; Isambert and Siggia, 2000; Thirumalai and
Woodson, 2000, and references therein). Also, force-in-
duced denaturation of RNA is currently studied experimen-
tally (C. Bustamante and I. Tinoco, private communication).
The limitation to secondary structure allows us to draw
upon the experimentally determined “free energy rules” for
RNA secondary structure (Freier et al., 1986; Mathews et
al., 1999; Walter et al., 1994), which yield minimum free
energy structures that agree reasonably well with experi-
mentally and phylogenetically determined ones (Mathews et
al., 1999). Furthermore, it permits us to use and extend the
efficient dynamic programming algorithms (Hofacker et al.,
1994; McCaskill, 1990; Zuker and Stiegler, 1981) that can
compute the exact partition function (including all possible
secondary structures) and reconstruct the minimal free en-
ergy structures in polynomial time. Experimentally, the
secondary structures may be probed in specific ionic con-
ditions (e.g., those with only monovalent ions) such that the
tertiary contacts are strongly disfavored (due to electrostatic
repulsion of the sugar-phosphate backbone) (Tinoco and
Bustamante, 1999, and references therein).

The type of experiment that we consider is sketched in
Fig. 1. The distanceR between the two ends of an RNA
molecule is held fixed, e.g., by attaching them to two beads
whose positions are controlled by optical tweezers, and the
forcef acting on the beads is recorded as a function ofR. As
long as the external change in force/extension is applied at
a much slower time scale than that of structural transitions
of the molecule, the equilibrium FEC is measured. In the
main part of the present article we assume that this is always
the case. Experimentally, this condition is usually checked
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by retracing the FEC (e.g., a hysteresis effect is a clear sign
of a nonequilibrium situation).

Besides the above-mentioned free energy parameters for
RNA secondary structure, we need a polymer model for
single-stranded RNA as input to make quantitative predic-
tions of FECs. To that end, we use an elastic freely jointed
chain model that has been used to fit experimental FECs of
single-stranded DNA (Montanari and Me´zard, 2001; Smith
et al., 1996). This introduces two polymer parameters, the
Kuhn length characterizing the lateral rigidity, and the lon-
gitudinal elasticity, which is determined by the forces
needed to stretch the chemical structure of the backbone.
We estimate both from the experiments on DNA, so that we
are left with no free parameters.

We find that for different secondary structures with all
other parameters (temperature, sequence length, etc.) fixed,
the FECs of RNA vary over a broad range from very rugged
to very smooth. Apart from the entropic elasticity of the
exterior single strand, which smooths the features in the
FEC independent of the secondary structure as already
discussed by Thompson and Siggia (1995), there are two
additional smoothing mechanisms. The first is a “compen-
sation effect”: the increase in the length of the exterior
single strand upon opening of a structural element and the
associated drop in the tension may be absorbed by rebinding
of bases from the exterior single strand in other structural
elements. The second is due to thermal fluctuations in the
secondary structure, i.e., the contribution of suboptimal
structures. We discuss both mechanisms and analyze the
fluctuations in the FEC quantitatively. The equilibrium
FECs of typical (natural or random) RNA sequences are
smooth and display no distinguishable signatures of indi-
vidual structural elements opening. This is consistent with
the experimental result of Maier et al. (2000) for single-
stranded DNA, but applies even for sequences with only a
few hundred nucleotides, i.e., for much shorter sequences
than used in their experiment.

For the purpose of obtaining information on the structure
of RNA, the measurement of equilibrium FECs is therefore

not very useful. More promising options include the mea-
surement of the fluctuations about the equilibrium and non-
equilibrium FECs, where the pulling proceeds faster than
(some of) the rearrangements in the structure. Although the
present approach is extended readily to include equilibrium
fluctuations (Gerland, U., R. Bundschuh, and T. Hwa, in
preparation), a quantitative treatment of the dynamics of
force-induced denaturation of RNA presents a challenge to
theoreticians.

The organization of the paper is as follows. In the next
section, we explain the details of our model and the way we
calculate the FECs. Readers interested in the results only
should directly proceed to that section. The Discussion
section explores the possibility of using experimental FECs
of appropriately designed sequences as an alternative way to
determine the RNA free energy parameters. In addition, we
estimate to what extent features may be expected in non-
equilibrium FECs.

MODEL AND METHODS

We assume that the forcef(R) acting on the beads (see Fig. 1) is measured
as a function of the fixed distanceR5 uRu, whereR denotes the end-to-end
vector of the RNA molecule, and thatR is varied very slowly so that
thermal equilibrium is always maintained. In practice, the force measure-
ment requires a device acting as a spring, hence the distance cannot be kept
exactly constant. However, we consider the situation where the stiffness of
this spring is much higher than that of the single-stranded RNA, which has
already been pulled out. This condition could only be violated in the very
early part of the pulling experiment, which is not the focus of the present
investigation. We may therefore neglect the presence of the spring alto-
gether, which amounts to working in the “fixed-distance ensemble” (see
Note 1 at end of text). Another difference between our model and actual
experiments is that we neglect the presence of additional spacer sequences,
which are used to connect the RNA molecule to the force-measuring device
(e.g., the beads). Again, we assume that they are stiffer than the liberated
single-stranded RNA because we are interested in the size of the features
in the FEC, which are observable in an ideal measurement.

The partition function at fixed extension,ZN(R), for a given RNA
sequence consisting ofN nucleotides, may be written as a sum over the
numberm of exterior open bases (as represented by open circles in Fig. 1).
For eachm the secondary structure contributes a factor4N(m) to the
partition function, according to the free energy rules for RNA/DNA sec-
ondary structure to be detailed shortly below. This contribution needs to be
weighted by the probabilityW(R; m) that the chain ofm exterior open
bases has end-to-end vectorR, given by an appropriate polymer model for
the single strand. Together, they yield

ZN~R! 5 O
m

4N~m!W~R; m!. (1)

The normalization* d3R W(R; m) 5 1 assures that the integral ofZN(R)
over space yields the usual partition functionZN for N nucleotides without
any external constraints. Equation 1 clearly separates the contribution of
the secondary structure, which is entirely contained in4N(m), from the
contribution of the exterior single strand contained inW(R; m). Note that
the polymer properties of theinterior single strands (i.e., the single strands
not subject to the external force) are contained in4N(m) through the
loop-entropy parameters, which are part of the free energy rules derived
from experiments (see Walter et al. (1994) and references therein).

FIGURE 1 Sketch of the pulling experiment considered in the text: the
two ends of an RNA molecule are attached to beads (shaded gray) and held
fixed at distanceR, while the forcef acting on the beads is measured. The
open circles represent the open bases of the exterior single strands, mod-
eled here as elastic freely jointed chains.
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Secondary structure

The number of possible secondary structures for a given sequence of length
N grows exponentially withN. To each structure6, a Boltzmann weight
z(6) may be assigned with the help of the free energy rules (Walter et al.,
1994) which contain a large number of experimentally determined energy
and enthalpy parameters, e.g., those for the stacking of basepairs, formation
of internal, hairpin, bulge or multi-loops, and dangling ends. Due to the
large number of possible structures, the full partition functionZN ¥6z(6)
is impossible to evaluate by enumeration, except for very smallN. How-
ever, one can make use of recursion relations that express the partition
function for a subsequence with the help of the partition functions for even
shorter subsequences (McCaskill, 1990; Zuker and Stiegler, 1981), and
proceed to compute the full partition function exactly inO(N3) time. These
recursion relations owe their existence to the fact that the class of second-
ary structures was defined to include onlynestedstructures, e.g., two
basepairs (i, j) and (k, l) with i , k , j , l are not admitted (the occurrence
of such pairings is called a pseudoknot and contributes relatively little to
the free energy of natural RNAs (Tinoco and Bustamante, 1999). One
implementation of this algorithm with very detailed free energy rules is the
“Vienna package” (Hofacker et al., 1994, publically available at http://
www.tbi.univie.ac.at/). In the following, we describe the modifications that
we made to this package to obtain4N(m) and the corresponding minimum
free energy structures.

The Vienna package calculates the auxiliary partition functionP(i, j)
for the substrand (i.e., a contiguous segment of the sequence) from basei
to basej, under the condition that basei and basej are paired. These
quantities can be used to calculate the partition functionQ(j; n) of the
substrand from base 1 to basej, under the condition that theexterior part
of the configurations is 0# n # j bases long. The recursion formula forQ
is

Q~j 1 1; n! 5 Q~j; n 2 1!

1 O
i5n2D11

j

Q~i 2 1; n 2 D!P~i, j 1 1!,

obtained by splitting the partition functionQ(j 1 1; n) up according to all
possible binding partners of basej 1 1. [Here, the constantD 5 3 accounts
for the fact that each stem branching from the exterior single strand
contributes an additional segment, whose length is approximately equal to
the length of three single-stranded bases.] This formula, together with the
appropriate boundary conditions forj 5 0 and n 5 0, can be solved
recursively by calculatingQ(j; n) first for all n at a givenj, and then for
increasingj. In the end, we have4N(m) 5 Q(N; m) for themexterior bases
in O(N3) time.

To produce the minimum free energy structures at fixedm, we use an
equivalent recursive scheme, but replacing the summations by maxima to
obtain first the minimum free energy (Zuker and Stiegler, 1981). Then, we
determine the corresponding structure by going through the scheme in
reverse and reconstructing at each step which of the terms was maximal.

Polymer model

The simplest polymer model for the exterior single strand (the open circles
in Fig. 1) is the Gaussian chain (de Gennes, 1979). However, as shown
below, the force-induced denaturation of RNA occurs at forces of order 10
pN, where the exterior single strand is strongly stretched and the Gaussian
model breaks down. In this regime, an elastic freely jointed chain (EFJC)
model [Self-avoidance in the exterior single strand may be neglected, again
because of its highly stretched state] yields a good fit to experimental FECs
(Montanari and Me´zard, 2001; Smith et al., 1996).

The distance along the backbone between two adjacent nucleotides is
the segment length of the chain. We denote it byl and assign an elastic
energyV(r ) 5 k(r 2 l)2/2 per segment, wherer represents the end-to-end

vector of the segment. Instead of attempting (the very cumbersome) exact
computation of the end-to-end vector distributionW(R; m) of the chain, we
use an asymptotic expression that becomes exact in the limit of largemand
is sufficiently accurate for our purposes even for smallm. It can be derived
along the line of a similar calculation for the case of the regular (i.e.,
nonelastic) freely jointed chain given in Flory (1967). The result is con-
veniently expressed in terms of the quantity

q~h! 5 Ed3r e2hzr2V(r )/kBTYEd3r e2V(r )/kBT,

wherekB denotes the Boltzmann constant andh is a vector of lengthh with
fixed (but arbitrary) orientation in space. The asymptotic expression is then

W~R; m! < C
h

2pR
@q~h!#me2hR, (2)

whereC is a normalization constant andh is determined fromR5 m (­/­h)
log q(h). We incorporate the effect of a Kuhn lengthb . l by rescaling the
end-to-end vector distribution throughl 3 b andm3 ml/b.

Observables

Apart from the force at fixed extension, which is calculated from Eq. 1 by

f~R! 5 2kBT
­

­R
log ZN~R! (3)

(see, e.g., Flory (1967)), we also calculate the mean number of stems,nstem,
along the exterior chain (for the structure depicted in Fig. 1 this would be
nstem 5 2). This may be determined by introducing an extra free energy
penalty,estem, for each external stem into the calculation of4N(m) and then
differentiating numerically with respect toestem, i.e.,

nstem~R! 5 2kBT
­

­estem
log ZN~R!U

estem50

.

Choice of parameters

We work at room temperature,T 5 208C, and use the DNA polymer
parameters obtained by Montanari and Me´zard (2001) by fitting to the
experiment of Maier et al. (2000) also for RNA, because we are not aware
of the corresponding experimental data. (We do not expect a large differ-
ence in the single-strand properties between DNA and RNA because of the
high similarity between their chemical structures.) The values arel 5 0.7
nm, b 5 1.9 nm, and (k/kBT)21/2 5 0.1 nm. We take the free energy
parameters for RNA secondary structure as supplied with the Vienna
package. The salt concentrations at which these free energy parameters
were measured are [Na1] 5 1 M and [Mg21] 5 0 M.

RESULTS

Fig. 2, a and b show the FECs (solid lines) for two RNA
sequences with practically the same total length and com-
position, both computed as described in the last section
using the same set of parameters. Strikingly, the first curve
is almost completely smooth, with no significant features,
while the second is extremely jagged, with large “jumps” in
the force. This dissemblance is entirely due to the difference
between the secondary structures into which the two se-
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quences fold. The sequence in Fig. 2a originates from the
group I intron of the methionine tRNA ofScytonema hof-
manii with a sequence length ofN 5 251 (GenBank
U10481). Its dominant secondary structure (according to
our algorithm (see Note 2 at end of text)) at an extension of
R5 10 nm is also depicted in Fig. 2a. The sequence in Fig.
2 b was artificially generated by concatenating a randomly
chosen sequence with its reverse complement, so that it
folds into a single hairpin composed of random basepairs.
Its FEC is very similar to the experimental force curve
obtained upon unzipping double-stranded DNA by Essevaz-
Roulet et al. (1997); the sawtooth-like oscillations corre-
spond to a “molecular stick-slip process” (Bockelmann et
al., 1997).

Why does the group I intron not display an abundance of
features in the FEC like the hairpin does? Its secondary
structure consists of many structural elements (e.g., stem-
loop structures), the opening of which one might expect to
produce clear signatures in the FEC. Indeed, in their theo-
retical study of force-induced denaturation of DNA/RNA,
Thompson and Siggia (1995) concluded that the opening of

individual basepairs in double-stranded DNA cannot readily
be observed, but the opening of stem-loop structures in
RNA should be.

One fairly obvious effect that could cause the smooth
FEC is thermal superposition of alternative secondary struc-
tures. Because one may expect that typical RNA structures
(such as the one depicted in Fig. 2a) are less well-designed
than a perfect hairpin, force-induced denaturation should
make more alternative structures accessible in the former
case than in the latter. In our analysis below we find that this
effect is indeed non-negligible, but the largest loss of fea-
tures originates from another, more subtle mechanism,
which we call the “compensation effect,” and which persists
even when no alternative secondary structures are allowed.
The compensation effect depends on the fact that when
several structural elements are pulled atin parallel, the
optimization process that determines the minimum free
energy structure with a given numberm of external open
bases mayreclosestretches of basepairs that had already
been opened at a lower valuem9 , m.

In our approach (see Model and Methods above), the
information on the secondary structure energetics for a
given sequence is entirely contained in the function4(m).
With the help of the polymer model (contained inW(R; m))
this information is translated into an FEC via Eq. 1. Our
investigation therefore comprises two steps. First, we seek
to understand what property of4(m) determines the size of
the fluctuations in the FEC, and second, how this property
depends on the secondary structure.

The first question is addressed most readily for the spe-
cial case of the random hairpin of Fig. 2b. It is known that
in the fixed-force ensemble, unzipping of a random hairpin
may be mapped onto the problem of a particle in a tilted
one-dimensional random potential (de Gennes, 1975;
Lubensky and Nelson, 2000). The random potential is cor-
related and has the statistical properties of a one-dimen-
sional random walk. In the fixed-distance ensemble, we
may perform a very similar mapping (see Fig. 3). [For these
mappings, alternative structures of the hairpin sequence are
neglected, which is a good approximation due to the perfect
design of the hairpin. Also, the nearest-neighbor correla-
tions in the random potential caused by the stacking ener-
gies are not taken into account because they would not
change the qualitative predictions of the model.] Here, the
bias for the direction of movement of the particle is not
caused by a tilt of the potential, but instead by a spring that
is attached to the particle. The position of the other end of
the spring is externally controlled, i.e., it is determined byR,
the given end-to-end distance of the RNA molecule.

In the following, we review the relation between the
parameters of the particle-in-a-random-potential problem,
i.e., the spring constantg and the variance of the random
potential, and the parameters of the unzipping problem. This
will also serve us to introduce our notation for the subse-
quent discussion. We may write the free energyG(m) 5

FIGURE 2 (a) Force-extension curve (FEC) for a group I intron (solid
line, see text for details) and a homopolymeric RNA of the same length,
N 5 251 (dashed line). The depicted secondary structure is the minimum
free energy structure atR 5 10 nm. (b) FEC for a hairpin composed of
randomly chosen basepairs (solid line) and a homogeneous hairpin of
AU-basepairs (dashed line). In both cases the total sequence length isN 5
252. (c) Mean number of exterior stems,nstem(R), for the group I intron.
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2kBT log 4(m) of the random hairpin asG(m) 5
2¥i51

N2m h(i), where theh(i) are random with mean̂h& 5 e
and variancêh(i)h(j)& 2 ^h&2 5 dij (De)2. Here,e represents
the mean binding energy per base, which depends on the
GC-content of the hairpin, the temperature, and the salt
concentrations; andDe measures the fluctuations ofe, both
along a given hairpin and between different realizations of
the random sequence. The difference between two free
energies that are, units apart,DG(,) 5 G(m) 2 G(m 2 ,),
then has the variance

var~DG~,!! 5 ,~De!2. (4)

In the particle picture (see Fig. 3),m 2 , corresponds to the
position of the particle, andm to the position of the other
end of the spring. For fixedm, the particle therefore sees the
effective potential

DG~,! 1
g

2
,2, (5)

i.e., Eq. 4 determines the variance of the random potential.
The spring constantg is determined bye as follows. IfDe
were zero, the unzipping force would take a constant value
f0 (cf. thedashed linein Fig. 2 b, which shows the FEC of
a homogeneous AU-hairpin). The dependence off0 on e can
be calculated analytically by evaluating the sum in Eq. 1 by
the saddle point method (see also D. K. Lubensky and D. R.
Nelson, manuscript in preparation). The result is shown in
Fig. 4 (solid line). Now g 5 l2G, whereG is the local spring
constant of a nonbinding RNA ofm bases at forcef0(e).
Because the spring constant of a homopolymer scales with
the inverse of the number of segments, we writeG 5 G0/m,
whereG0 depends only onf0, but not onm. Graphically,
G0(f0) is the slope atf 5 f0 of the dashed line in Fig. 2a
(FEC of a homopolymeric RNA), multiplied by 251 (the
number of bases in that example). In this wayG0(f0) may
also be determined from an experimental FEC.

When the fluctuations in the random potential are not too
weak, the particle follows the other end of the spring in
discrete jumps. The typical size of a jump,D,jump, is given

by the value of, for which the two terms in Eq. 5 are of
equal size,D,jump . (2mDe/l2G0)

2/3. A typical jump then
leads to a drop in the force bydf . GlD,jump, i.e.,

df . ~4G0De2/R!1/3. (6)

This is valid as long as the thermal broadening of the
particle position,D,T . (2m/l2G0b)1/2, is less than the
typical jump sizeD,jump. In the opposite case, the particle is
sliding more or less smoothly, anddf } De.

Equation 6 furnishes an estimate for the size of the
fluctuations in the FEC for the case of a random hairpin.
However, because we used an arbitrary functionG(m) as
input, the above argument may be made in general for any
structure, as long as Eq. 4 holds sufficiently well. Alterna-
tively, if for a particular structure the dependence of
var(DG(,)) on , is determined numerically, this could be
used to replace Eq. 4, and Eq. 6 would have to be modified
accordingly.

We now address the question of how the fluctuations in
G(m) depend on the secondary structure. An essential dif-
ference between unzipping of a hairpin and force-induced
denaturation of a typical RNA structure is that in the latter
case, several stems are being pulled on simultaneously (see
Note 3 at end of text) for most of the extension interval (see
Fig. 2 c, which shows the number of stems as a function of
the extension for the group I intron studied above). To
analyze the effect of multiple stems, we constructed artifi-
cial sequences that form a given numbern of random
hairpins in a row (i.e., the sequences are a concatenation of
n random hairpin sequences, each of which is constructed as
explained above). For eachn in the range 1# n , 10, we
computedG(m) and the FECs for 1000 different sequence

FIGURE 3 The problem of RNA pulling (in the fixed-distance ensem-
ble) may be mapped onto the statistical mechanics problem of a particle
with a spring attached to it moving in a one-dimensional disordered
potential. The other end of the spring is externally controlled and slowly
advanced into one direction.

FIGURE 4 Threshold forcef0 for unzipping of a homogeneous hairpin
as a function of the binding energy per basee (solid line). The dashed line
indicates the Gaussian approximationf0 5 (6kBTe/lb)1/2, which is obtained
by using the end-to-end distance distributionW(R; m) of a Gaussian chain.
Note that the Gaussian approximation breaks down already at low forces,
and the more detailed treatment according to Eq. 2 is necessary. The
stacking energy for AU-pairs atT 5 20°C is 2e ' 1.21 kcal/mol corre-
sponding to a threshold forcef0 ' 11 pN, which agrees with the value
observed in Fig. 2b (dashed line).
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realizations, all with an approximate total length ofN 5
1000. As an example, Fig. 5 shows the FECs for three
sequences, which fold inton 5 1, 3, and 8 hairpins, respec-
tively. Clearly, the fluctuations in the force curve decrease
with increasingn. We obtained var(DG(,)) as an average
over the 1000 realizations and a small interval ofm. Some
of the resulting curves are shown in Fig. 6. Although the
dependence of var(DG(,)) on , is not completely linear, the
deviation from linearity over the small range of,-values
relevant here (typically, 0# , # 12) is not very large. For
the sake of simplicity, we chose to interpret the data with the
theory for a linear var(DG(,)) developed above. To this end,

we define an effectiveDe for eachn from the slope of
var(DG(,)) at , 5 4.

Fig. 7 shows thatDe2 decreases monotonically with the
number of stems that are being pulled on simultaneously.
This decrease is almost entirely due to the compensation
effect, which we may intuitively understand as follows.
When a single hairpin is being unzipped, the stick-slip
process described in Essevaz-Roulet et al. (1997) is topo-
logically inevitable because the basepairs have to be opened
in the order in which they occur. A strongly bound region
that is followed by a weakly bound one always leads to a
rise and subsequent drop of the FEC. However, with several
hairpins, only the total number of exterior open bases is
externally constrained, while the individual hairpins may
freely open and reclose basepairs (for equilibrium FECs
there is no kinetic constraint). Therefore, if in a particular
hairpin a strongly bound region is followed by a weakly
bound one, both regions can open together and another
hairpin can reclose a few basepairs to compensate for the
released single-strand. Obviously, with a growing number
of hairpins, this mechanism will be increasingly effective.
Clearly, in the fixed-force ensemble the compensation ef-
fect is equivalent to an average over the FECs of the
individual hairpins. Moreover, with a large number of hair-
pins, the fixed-force and the fixed-distance ensembles be-
come equivalent (D. K. Lubensky and D. R. Nelson, manu-
script in preparation).

To quantitatively analyze the force fluctuations, we cal-
culated the FECs for all of the 1000 sequence realizations of
the n parallel hairpins, and definedDf(R) as the standard
deviation of the force at extensionR (the so-definedDf is
smaller than the typical size of a force jump,df, but should
have the same scaling behavior). Fig. 8 shows a plot of the
force fluctuations against the free energy fluctuations,
where the horizontal axis,De(2b3R/l3G0)

1/4 5 (D,jump/
D,T)3/2, is scaled such that it separates the jumping regime
from the sliding regime at a crossover value of one. The
vertical axis is scaled such that the data should collapse onto
a straight line in the jumping regime according to Eq. 6. To
guide the eye, Fig. 8 also displays artificial data (crosses)
for which G(m) was generated by drawing random numbers

FIGURE 5 Force-extension curves for 1, 3, and 8 hairpins with random
basepair composition in a row (sequence lengthN 5 1000; the middle and
upper curves are vertically shifted by 15 and 30 pN, respectively). Clearly,
the fluctuations in the force curve decrease with increasing number of
hairpins, except for the last third of the extension interval, where some of
the hairpins of the 8-hairpin curve have already completely disappeared. In
our analysis described in the main text only the first two-thirds of all FECs
were used. The decrease of the force fluctuations with increasing extension
is due to the entropic elasticity of the exterior single strand as described by
the R-dependence in Eq. 6.

FIGURE 6 The variance ofDG(,) for different numbers of hairpins.

FIGURE 7 Dependence ofDe2 on the number of hairpins (circles).
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h(i) and takingG(m) 5 2¥i51
N2m h(i) (the different points

are for different values for the mean and variance ofh(i)).
The circles mark the data points for the parallel hairpins,
and the rectangular symbol in the lower left indicates in
what region the group I intron is situated. [The rectangular
area marks the range of points that we obtained by deter-
mining df, De, andG0 by averaging over different extension
intervals, all within the range 50–110 nm, which is a region
where the mean force is relatively constant (this is required
to separate fluctuations in the force from a gradual change
in the mean value).]

For the artificial data (crosses) the above scaling argu-
ments should rigorously apply. Indeed, the artificial data fall
onto a straight line in the jumping regime (the solid line
represents a linear fit to the points with abscissae larger than
two), and in the sliding regimeDf is proportional toDe (not
shown). For the real data, Fig. 8 shows that passing from a
single hairpin through structures with several parallel per-
fect hairpins to a typical natural RNA may be viewed as
passing from the jumping regime to the sliding regime for a
particle in a (correlated) random potential. At the same time,
the FECs change from jagged to smooth.

As mentioned above, thermal superposition of alternative
secondary structures also contributes to the smoothing of
the FECs: as the structural elements in each suboptimal
structure open at different values ofm, the thermal average

over all these structures smoothesG(m). To assess the
importance of this effect, we suppressed it by taking only
the minimum free energy secondary structures into account
instead of calculating the full partition function4(m). For
the group I intron, the FEC without the contribution of
suboptimal structures is shown in Fig. 9b. Compared to the
full thermodynamic curve (shown in Fig. 9a) some struc-
ture is gained, but not nearly as much as in the FEC for the
random hairpin of the same length, Fig. 2b. This indicates
that the compensation effect is the dominant source for the
smoothing of the FEC.

DISCUSSION

In the preceding section we found that the equilibrium FECs
for typical RNA molecules (such as the group I intron that
served us as an example) are quite smooth and do not reveal
any features that can be associated with the opening of
structural elements. The compensation effect is the primary
cause for this result, and we expect it to be responsible, in
part, also for the experimental observation of extremely
smooth FECs for single-stranded DNA by Maier et al.
(2000). Nevertheless, the measurement of equilibrium FECs
for RNA or single-stranded DNA might still be useful, e.g.,
for an experimental determination of the RNA/DNA free
energy parameters. Usually, these are extracted from melt-
ing curves of oligomers (Freier et al., 1986), which requires
variation of the temperature away from the temperature of
interest up to the melting point of the oligomers, where the
free energy and its temperature derivative are determined.
The free energy parameters at the temperature of interest are

FIGURE 8 Scaling plot of the force fluctuations against the free energy
fluctuations. The dashed vertical line marks the crossover region between
the jumping regime and the sliding regime. The solid line is a linear fit to
the data with abscissae larger than two. It confirms the scaling behavior
expected for the jumping regime. See text for details.

FIGURE 9 Force-extension curves for the group I intron under different
conditions. Curve (a) is a copy of the full thermodynamic curve of Fig. 2
a. Curve (b) (vertically shifted by 7pN) was calculated by taking only the
minimum free energy structures along the unfolding pathway into account,
i.e., the thermal smoothening due to suboptimal structures is suppressed.
For curve (c) (vertically shifted by 14 pN), the rebinding of basepairs that
had already opened at smaller extension has also been suppressed to
simulate nonequilibrium pulling.
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then obtained by extrapolation, which introduces an error
inherent to the method. For pulling experiments, the tem-
perature can be kept constant at the value of interest, which
is an obvious advantage. Here, the limiting factor is only the
precision of the force measurement. The quantitative rela-
tionship between stacking energy and threshold force ex-
pressed by Fig. 4 furnishes the necessary link between force
and energy. Measuring FECs for periodic hairpins com-
posed of different building blocks would lead to curves like
the dashed line in Fig. 2b with different values for the
threshold force. From these values the stacking energies
could then be determined, which might lead to more accu-
rate parameters at the desired temperature and salt concen-
trations.

There are (at least) two options to obtain FECs with more
features, which in turn might allow one to obtain informa-
tion on RNA secondary structure from pulling experiments.
One could either recordnonequilibriumFECs or analyze the
fluctuationsaround the equilibrium curve. For our theoret-
ical investigation, the latter option is not available as long as
we work in the fixed-distance ensemble because the force
fluctuations around the thermodynamic average diverge in
that ensemble. We will pursue this option in a separate
publication by working in a mixed ensemble (U. Gerland, R.
Bundschuh, and T. Hwa, manuscript in preparation). Here,
we briefly consider nonequilibrium FECs, where the rate of
external increase in the force/extension is higher than (some
of) the rates associated with internal rearrangements in the
secondary structure. In the case of longproteins, either
naturally occurring as an array of globular domains (Rief et
al., 1997) or synthesized protein arrays (Yang et al., 2000),
mechanical stretching experiments resolved the unfolding
of up to 20 individual domains. These experiments were
performed under nonequilibrium conditions (Rief et al.,
1998) with typical pulling speeds of 1mm/s.

To estimate whether nonequilibrium conditions are at-
tainable for RNA with reasonable pulling speeds, we need a
rough idea of the timescales involved in secondary structure
rearrangements of RNA. For this, we again assume that
RNA and single-stranded DNA behave similarly, so that we
may draw on an experiment by Bonnet, Krichevsky, and
Libchaber (Bonnet et al., 1998) measuring the opening and
closing rates of DNA stem-loops using fluorescence corre-
lation spectroscopy. From their results, we extract 10ms as
an estimate for the closing time (atT 5 208C) of a stem-
loop structure with three basepairs and a loop of four
nucleotides, which may be considered as a minimal second-
ary structure element. We expect that the formation of the
stem-loop takes place in a single step whose reaction path-
way goes through a transition state where the basepairs of
the stem have not yet formed, but the corresponding bases
are already closely together (see Fig. 10). In the presence of
an external force, the closing time must then be multiplied
with an Arrhenius factoreDW/kBT, whereDW is the work
that has to be exerted against the force to pull in the amount

of single strand needed for the formation of the stem-loop
(Rief et al., 1998). With a typical force of 6 pN we obtain
DW ' 4 kcal/mol, which results in a closing time on the
order of 10 ms. This timescale has to be compared to the
time it takes to stretch out the stem-loop. At a pulling speed
on the order of 1mm/s the two timescales are comparable,
and hence both the formation of new secondary structure
elements and the restoration of already opened ones are
likely to be suppressed. [This estimatedoes not applyfor the
rezippingof partially opened, perfectly complementary long
hairpins, which is faster than closing of a stem-loop. How-
ever, in real RNA structures, long stems are usually inter-
rupted by internal or bulge loops, which we expect to
reclose on similar timescales as the stem-loops.] Although it
is beyond the scope of this paper, we want to note that in the
presence of pseudoknots and/or tertiary interactions, the
formation or re-formation of structural elements is expected
to be slowed down even further, due to long search times for
the interaction partners.

To obtain an impression of how many features a non-
equilibrium FEC might show for the group I intron we
change our equilibrium algorithm, such that the rebinding of
bases is disabled once they have been unbound, and include
only the contribution of the minimum free energy structures
instead of all possible secondary structures. This is clearly a
very crude approximation. In a proper treatment, only those
kinetic processes whose energy barrier is higher than a
certain threshold as determined by the pulling speed should
be suppressed. Also, we did not account for the fact that the
opening of basepairs occurs at higher forces in nonequilib-
rium as a consequence of Kramers theory (Evans and
Ritchie, 1997). Nevertheless, the FEC shown in Fig. 9c
gives an idea of the large number of structural transitions
that take place during force-induced denaturation (for com-

FIGURE 10 Sketch of the assumed pathway for the formation of a
stem-loop structure in the presence of a stretching forcef. A generalized
reaction coordinatex is plotted along the horizontal axis and the free
energyG along the vertical axis. The work that has to be exerted against
the force to pull in the single strand needed for the formation of the
stem-loop structure is denoted byDW. In principle, the entropy difference
between the random coil state on the left and the transition state also
contributes to the barrier height; however, we assume that at typical
stretching forces it is negligible compared toDW.
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parison, the equilibrium FEC is shown again in Fig. 9a).
We therefore believe that nonequilibrium stretching exper-
iments of RNA could lead to interesting and useful results.

We made most of the software tools developed for the
present work available to the public by creating an “RNA
pulling server” at http://bioinfo.ucsd.edu/RNA.

NOTES

1. In the “fixed-distance ensemble” only the average force is well-
defined, whereas the fluctuations about the average diverge. This reflects
the fact that it takes increasingly higher forces to compensate thermal
fluctuations on shorter and shorter timescales to keep the extensionexactly
fixed. Therefore, if one is interested in the fluctuations (of either the force
or the extension), the external spring should not be neglected, which would
amount to working in a mixed ensemble between “fixed-distance” and
“fixed-force.”

2. The known native secondary structure of this sequence contains two
helical regions forming a pseudoknot. Because pseudoknots are excluded
from our approach (as explained above), we removed it from the structure
computationally by replacing six basepairs in the less stable of the two
helical regions (positions no. 79–84 and 157–162) by artificial bases that
are excluded from basepairing. With this modification, the minimum free
energy structure at zero force (as determined by the Vienna package) is
almost identical with the secondary structure known from comparative
sequence analysis (Gutell et al., 2001, manuscript in preparation, available
at http://www.rna.icmb.utexas.edu/) outside of the pseudoknot region. Be-
yond the distance at which the pseudoknot is pulled apart, our modification
of the sequence should not significantly affect the FEC. This expectation is
supported by our numerical observation that the FECs for the unmodified
sequence (ignoring the pseudoknot) and for our modified sequence become
close to identical beyond a distance ofR ' 70 nm.

3. In principle, a situation where several stems are pulled on in parallel
can also arise in the process of unzipping a single long hairpin, due to
accidental palindromic regions in the single strand that has already been
pulled out. However, these non-native interactions have to overcome the
energetic advantage of the native single-hairpin interactions for the effect
to become relevant. Hence, the palindrome needs to be extremely GC-rich.
For a single hairpin consisting of random basepairs, we estimated that a
non-negligible palindrome would typically occur only in sequences of at
least several thousand bases in length, which is beyond the length of the
sequences studied here.
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