Model: 1-dim Random Walk

\[
\frac{dr}{dt} = -v + \gamma(t), \quad v \geq 0
\]

\[
\langle \gamma(t) \gamma(t') \rangle = 20D(t-t')
\]

\[
P(r,t|r',t') = \frac{1}{\sqrt{4\pi D(t-t')}} \exp \left(-\frac{(r-r'+v(t-t'))^2}{4D(t-t')} \right)
\]

\[
\rightarrow \text{want } L(c) = \text{prob that RW exceeds } c \text{ at some time}
\]

(a) no drift \(v = 0 \)

let \(Q_c(r,t) \) be prob fr particle to be at \((r,t) \)

and never have been beyond \(c \)

then \(L(c) = 1 - \int_{-\infty}^{c} dr \ Q_c(r,t \rightarrow \infty) \)

\(Q_c(r,t) \) : soln of diff eqn

with \(\text{as } Q(r=c) = 0 \)

Can be solved using "image charge"

Every path from \((0,0) \) to \((r,t) \) which

has gone beyond \(c \) is canceled by the path from \((2c,0) \) to \((r,t) \)

\[
Q_c(r,t) = P(r,t|0,0) - P(r,t|2c,0)
\]

\[
= \frac{1}{\sqrt{4\pi D t}} \exp \left(-\frac{r^2}{4Dt} \right) - \frac{1}{\sqrt{4\pi D t}} \exp \left(-\frac{(r-2c)^2}{4Dt} \right)
\]
\[
\int_{-\infty}^{c} Q_c(r,t)dr = \frac{1}{\sqrt{4\pi Dt}} \left[\int_{-\infty}^{c} e^{-\frac{(r-\bar{c})^2}{4Dt}} dr - \int_{-\infty}^{c} e^{-\frac{(r-c)^2}{4Dt}} dr \right] \\
= \frac{1}{\sqrt{4\pi Dt}} \int_{-c}^{c} e^{-\frac{y^2}{4Dt}} dy = \sqrt{\frac{2}{\pi Dt}} \rightarrow 0
\]

\[\Rightarrow Q(c) \rightarrow 1\]

with drift \(v=0\), any finite boundary \(c\) is passed with probability 1.

(b) with drift \(v>0\) (downward)

\[\Rightarrow \text{use "first passage time" method}\]

let \(g_c(t') = \text{prob to hit } c \text{ for the first time at time } t'\)

then \(Q(c) = \int_{0}^{\infty} g_c(t')dt'.\)

to find \(g_c(t)\), consider \(P(r,t;\infty)\) with \(r>c\)

the path has to hit \(c\) at some point \(t'<t\) for first time

\[\Rightarrow P(r,t|1,0,0) = \int_{0}^{t'} g_c(t') P(r,t'|c,t') dt'\]

Can solve for \(g_c(t)\) in Laplace space

for \(P(r,s) = \int_{0}^{\infty} e^{-ts} P(r,t) dt\) and \(g_c(s) = \int_{0}^{\infty} e^{-ts} g_c(t) dt\)

we have \(\hat{P}(r,s) = \hat{g}_c(s) \cdot \hat{P}(r-c,s)\)
Find \(\hat{P}(r,s) \) via its Fourier Transform \(\hat{F}(r,s) \):

\[
\hat{P}(r,s) = \int dk \frac{e^{-ikr}}{Dk^2 + i kv + s}
\]

where \(\hat{F}(k,s) = \int dt e^{ts} \int dr e^{ikr} \frac{1}{\sqrt{4\pi t}} e^{-\frac{r^2}{4at}} \).

Transform \(\beta \)

\[
\hat{F}(k,s) = \int dt e^{ts} \int dr \frac{e^{-\frac{r^2}{4at}}}{\sqrt{4\pi at}} e^{ikr} e^{-ikvt} e^{-Dk^2 t}
\]

\[
= \frac{1}{Dk^2 + i kv + s}
\]

\[
\hat{P}(r,s) = \int dk \frac{e^{-ikr}}{Dk^2 + i kv + s}
\]

\[
= i \text{ Res} \left(\frac{e^{-ikr}}{Dk^2 + i kv + s} \right)
\]

Poles of \(\hat{F}(k,s) \): \(Dk^2 + i kv + s = 0 \)

\[
k_0 = -i\left(\frac{u \pm \sqrt{v^2-4Ds}}{2D} \right) = -i \left(\frac{u \pm \sqrt{\frac{v^2}{2D} + \frac{4s}{D}}}{} \right)
\]

\[
\hat{P}(r,s) = i \text{ Res} \left(\frac{e^{-ikr}}{D(k-i\kappa)(k+i\kappa)} \right) = \frac{i e^{-k\kappa}}{-D x(k+i\kappa)}
\]

\[
= e^{-\left(\frac{kr}{2D} + \frac{\sqrt{(kr)^2 + \kappa^2}}{2D} \right)}
\]

\[
D \left(\frac{kr}{2D} \right)
\]

\[
\hat{g}_c(s) = \frac{\hat{P}(r,s)}{\hat{P}(r-c,s)} = e^{-\left(\frac{kr}{2D} + \sqrt{\frac{(kr)^2 + \kappa^2}{2D}} \right)} c
\]

\[
\hat{g}_c(s) = e^{-\left(\frac{kr}{2D} + \sqrt{\frac{(kr)^2 + \kappa^2}{2D}} \right)} c
\]

\[
L(c) = \int_0^\infty dt \hat{g}_c(t) = \hat{g}_c(s=0) = e^{-\frac{kr}{2D}} c
\]
(c) Extremal ensemble
Consider discrete set of variables
e.g., $\sigma_n \in \{ s_1, s_2, \ldots, s_k \}$
with probabs. p_1, p_2, \ldots, p_k respectively
and $\sum_{i=1}^k p_i = 1$
Suppose $S = \sum_{i=1}^k p_i s_i = -|\nu| < 0$
but $X_N = \sum_{n=1}^N \sigma_n = c > 0$ for $N \gg 1$

c
\[\text{typical} \]
\[\text{rare} \]

What is the likely composition of the rare event $X_N > c$?
Quantify: $X_N = n_1 s_1 + n_2 s_2 + \ldots + n_k s_k$
where $n_i = \# \text{time } s_i \text{ appeared in } X_N > c$.

$p_i = \frac{n_i}{N} = \text{composition of rare event}$
(Extremal Ensemble)
(c.f. microcanonical ensemble)

Probability of occurrence:

$P(n_1, n_2, \ldots n_k) = \frac{(\sum n_i)!}{n_1! n_2! \ldots n_k!} \frac{k!}{i=1} p_i^{n_i}$
Use Stirling approx: \[\ln \Gamma = \Gamma \ln \Gamma - \Gamma \]
\[\ln \Omega = (\sum_i n_i) \ln (\sum_i n_i) - \sum_i n_i \]
\[\quad - \sum_i (n_i \ln n_i - n_i) + \sum_i n_i \ln \pi_i \]

Constraint: \[\sum_i n_i \pi_i = c \]

Most likely dist \(P^* \) → maximize \(P \) subject to constraint

→ use Lagrange multiplier: \[L = \ln P + \lambda \left(\sum_i n_i - c \right) \]

\[\frac{\partial L}{\partial n_i} = 0 \quad \Rightarrow \quad \frac{\partial}{\partial n_i} \ln P + \lambda \frac{\partial}{\partial n_i} n_i = 0 \]

\[\ln (\sum_i n_i^*) + 1 - \ln n_i^* - 1 + \ln \tilde{p}_i + \lambda n_i = 0 \]

\[\ln \tilde{p}_j + \lambda n_j = \ln \frac{n_j^*}{\sum_i n_i^*} \]

\[\Rightarrow \quad \frac{n_j^*}{\sum_i n_i^*} = \tilde{q}_j = \frac{p_j e^{\lambda n_j}}{\sum_j p_j e^{\lambda n_j}} \]

\[\text{det} \sum_j \tilde{q}_j = 1 \Rightarrow \sum_j p_j e^{\lambda n_j} = 1 \]

HW 4: show \[S^* = \sum_j \tilde{q}_j \sigma_j > 0 \]

\[L(c) = e^{-\lambda c} \]

For Gaussian dist: \[\lambda = \frac{\nu}{\sigma^2} \]